Задержка роста плода у коров ассоциирована с внутриутробным дисэлементозом
Аннотация
Задержка роста плода (ЗРП) у коров широко распространена в высокопродуктивных молочных стадах и представляет серьезную проблему для животноводства. Одним из факторов, предрасполагающих к ЗРП, является дефицит эссенциальных микроэлементов и нарушения транспортной функции плаценты у беременных. В настоящей работе проведен сравнительный анализ содержания 12 микроэлементов и их соотношения в волосах у новорожденных телят с ЗРП в анамнезе (Группа I, n = 18) и особей с физиологическим течением беременности у их матерей (Группа II, n = 24). ЗРП диагностировали по результатам ультразвукового исследования матерей на 38-45, 60-65 и 110-115 дни гестации с помощью сканера «Easi-Scan-3» с линейным датчиком 4,5-8,5 МГц (BCF Technology Ltd., Великобритания) по ранее разработанному и опубликованному протоколу. Образцы волос у телят получали из кисти хвоста непосредственно перед 1-м кормлением молозивом. Методом масс-спектрометрии с индуктивно-связанной плазмой (Nexion 300D, Perkin Elmer, США) в образцах волос исследовали содержание мышьяка, кадмия, кобальта, меди, железа, ртути, марганца, молибдена, никеля, свинца, селена и цинка. Для оценки внутриутробного дисэлементоза по измеренному содержанию микроэлементов в волосах рассчитывали их соотношения: мышьяк/селен, ртуть/селен, свинец/селен, свинец/цинк, кадмий/селен, никель/цинк и железо/медь. У телят Группы I установлено повышенное содержание в волосах кадмия (на 66,7%, Р < 0,05) и ртути (в 15,0 раз, Р < 0,05) и пониженное – меди (на 30,7%, Р < 0,05), селена (на 28,8%, Р < 0,05) и цинка (на 26,4%, Р < 0,05) по сравнению с животными Группы II. Содержание в крови других исследованных микроэлементов в волосах достоверно не различалось между группами. Результаты исследования показывают, что развитие плода у ЗРП-коров в последнем триместре беременности происходит в условиях дисбаланса эссенциальных и токсичных микроэлементов. Так, соотношение ртуть/селен в волосах у телят Группы I по сравнению с новорожденными Группы II было повышено в 45,3 раза (Р < 0,05), свинец/селен – в 2,81 раза (Р < 0,05), кадмий/селен – в 6,63 раза (Р < 0,05), никель/цинк – в 2,91 раза (Р < 0,05), железо/медь – в 2,64 раза (Р < 0,05). Анализируются возможные причины и механизмы, лежащие в основе этих нарушений.
EDN: GIKGAX
Скачивания
Литература
Butko, V. A., Lozovaya, E. G., & Mikhalev, V. I. (2020). Clinical and echographic markers for diagnosing early embryogenesis disorders in cows. Veterinary Pharmacological Bulletin, 2(11), 177-190. https://doi.org/10.17238/issn2541-8203.2020.2.177 EDN: https://elibrary.ru/pxusjv
Vorobyev, V. I., & Vorobyev, D. V. (2014). Physiological aspects of mineral metabolism in Simmental cows bred under environmental conditions of low Se, I, and Co levels in the environment and feed of the Lower Volga region. Fundamental Research, 8-4, 864-870. EDN: https://elibrary.ru/sjmnij
Gurkina, L. V., Naumova, I. K., & Lebedeva, M. B. (2016). Mutual action of biogenic trace elements and heavy metals in animal organisms. Agricultural Bulletin of the Upper Volga Region, 1, 32-37. EDN: https://elibrary.ru/tpzsij
Kovalsky, V. V. (1974). Geochemical ecology. Moscow: Nauka, 300 p.
Miroshnikov, S. A., Zavyalov, O. A., Frolov, A. N., Kharlamov, A. V., Duskaev, G. K., & Kurilkina, M. Ya. (2016). Elemental composition of wool as a model for studying interelement interactions. Beef Cattle Breeding Bulletin, 4(96), 9-14. EDN: https://elibrary.ru/xilxpt
Safonov, V. A., Ermilova, T. S., Chernitsky, A. E., & Salimzade, E. A. O. (2024). Predicting the level of trace element nutrition in fetuses of deeply pregnant cows. Siberian Journal of Life Sciences and Agriculture, 16(3). https://doi.org/10.12731/2658-6649-2024-16-3-860 EDN: https://elibrary.ru/hxxvlk
Skalny, A. V., & Rudakov, I. A. (2004). Bioelements in medicine. Moscow: Mir, 272 p. ISBN: 5-03-003645-8 EDN: https://elibrary.ru/wqrzft
Abdelrahman, M.M. & Kincaid, R.L. (1993). Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation. Journal of Dairy Science, 76(11), 3588-3593. https://doi.org/10.3168/jds.s0022-0302(93)77698-5
Anas, M., Diniz, W.J.S., Menezes, A.C.B., Reynolds, L.P., Caton, J.S., Dahlen, C.R. & Ward, A.K. (2023). Maternal mineral nutrition regulates fetal genomic programming in cattle: a review. Metabolites, 13(5), 593. https://doi.org/10.3390/metabo13050593 EDN: https://elibrary.ru/cnnbmg
Azzam, S.M., Kinder, J.E., Nielsen, M.K., Werth, L.A., Gregory, K.E., Cundiff, L.V. & Koch, R.M. (1993). Environmental effects on neonatal mortality of beef calves. Journal of Animal Science, 71(2), 282-290. https://doi.org/10.2527/1993.712282x
Menezes, A.C.B., McCarthy, K.L., Kassetas, C.J., Baumgaertner, F., Kirsch, J.D., Dorsam, S.T., Neville, T.L., Ward, A.K., Borowicz, P.P., Reynolds, L.P., Sedivec, K.K., Forcherio, J.C., Scott, R. & Caton, J.S. (2022). Vitamin and mineral supplementation and rate of gain in beef heifers I: Effects on dam hormonal and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids at d 83 of gestation. Animals, 12(14), 1757. https://doi.org/10.3390/ani12141757 EDN: https://elibrary.ru/owyxrp
Buczinski, S.M., Fecteau, G., Lefebvre, R.C. & Smith, L.C. (2007). Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives arising from comparative medicine. The Canadian Veterinary Journal, 48(2), 178-183.
Chen, Y.H., Zhao, M., Chen, X., Zhang, Y., Wang, H., Huang, Y.Y., Wang, Z., Zhang, Z.H., Zhang, C. & Xu, D.X. (2012). Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. The Journal of Immunology, 183(1), 454-463. https://doi.org/10.4049/jimmunol.1103579
Chernitskiy, A. & Safonov, V. (2019). The effects of the vitamin-mineral drug “Antimiopatik” use in cows during the dry period on postnatal growth and health of the offspring. Reproduction in Domestic Animals, 54(S3), 131-132. https://doi.org/10.1111/rda.13528 EDN: https://elibrary.ru/scexqz
Cygan-Szczegielniak, D., Stanek, M., Giernatowska, E. & Janicki, B. (2014). Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biologica, 62(3), 163-169. https://doi.org/10.3409/FB62_3.163
Dahlen, C.R., Reynolds, L.P. & Caton, J.S. (2022). Selenium supplementation and pregnancy outcomes. Frontiers in Nutrition, 9, 1011850. https://doi.org/10.3389/fnut.2022.1011850 EDN: https://elibrary.ru/jacotg
Eby, G.N. (2016). Principles of Environmental Geochemistry. Long Grove: Waveland Press, 514 p.
Fitzgerald, A.M., Ryan, D.P. & Berry, D.P. (2015). Factors associated with the differential in actual gestational age and gestational age predicted from transrectal ultrasonography in pregnant dairy cows. Theriogenology, 84(3), 358-364. https://doi.org/10.1016/j.theriogenology.2015.03.023
Georgievskii, V.I., Annenkov, B.N. & Samokhin, V.T. (1982). Mineral Nutrition of Animals. London: Butterworths, 475 p. ISBN: 0-408-10770-7 EDN: https://elibrary.ru/rtxvft
Goff, J.P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763-2813. https://doi.org/10.3168/jds.2017-13112 EDN: https://elibrary.ru/vemohd
Greenwood, P.L. & Bell, A.W. (2019). Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics of North America: Food Animal Practice, 35(2), 303-319. https://doi.org/10.1016/j.cvfa.2019.02.008
Greenwood, P.L. & Café, L.M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production. Animal, 1(9), 1283-1296. https://doi.org/10.1017/S175173110700050X
Grzeszczak, K., Kwiatkowski, S. & Kosik-Bogacka, D. (2020). The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 10(8), 1176. https://doi.org/10.3390/biom10081176 EDN: https://elibrary.ru/igeamy
Harvey, K.M., Cooke, R.F., Colombo, E.A., Rett, B., de Sousa, O.A., Harvey, L.M., Russell, J.R., Pohler, K.G. & Brandão, A.P. (2021). Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: physiological and productive response of cows and their offspring until weaning. Journal of Animal Science, 99(5), skab095. https://doi.org/10.1093/jas/skab095 EDN: https://elibrary.ru/atclci
Hicks, Z.M. & Yates, D.T. (2021). Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock. Frontiers in Animal Science, 2, 761421. https://doi.org/10.3389/fanim.2021.761421 EDN: https://elibrary.ru/tgiodw
Hracsko, Z., Orvos, H., Novak, Z., Pal, A. & Varga, I.S. (2008). Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Report, 13(1), 11-16. https://doi.org/10.1179/135100008X259097
Issah, I., Duah, M.S., Arko-Mensah, J., Bawua, S.A., Agyekum, T.P. & Fobil, J.N. (2024). Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. Science of the Total Environment, 908, 168380. https://doi.org/10.1016/j.scitotenv.2023.168380
Joksimović-Todorović, M., Davidović, V. & Bojanić-Rašović, M. (2016). The effects of some microelements supplementation: Selenium, zinc and copper into dairy cows feeds on their health and reproductive performances. Biotechnology in Animal Husbandry, 32(2), 101-110. https://doi.org/10.2298/BAH1602101J
Kalaeva, E., Kalaev, V., Chernitskiy, A., Alhamed, M. & Safonov, V. (2020). Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Veterinary World, 13(5), 987-995. https://doi.org/10.14202/vetworld.2020.987-995 EDN: https://elibrary.ru/vnsrtq
Lewicka, I., Kocyłowski, R., Grzesiak, M., Gaj, Z., Oszukowski, P. & Suliburska, J. (2017). Selected trace elements concentrations in pregnancy and their possible role - Literature review. Ginekologia Polska, 88(9), 509-514. https://doi.org/10.5603/gp.a2017.0093
Lonergan, P., Forde, N. & Spencer, T. (2016). Role of progesterone in embryo development in cattle. Reproduction, Fertility and Development, 28(1-2), 66-74. https://doi.org/10.1071/rd15326
Mao, W.H., Albrecht, E., Teuscher, F., Yang, Q., Zhao, R.Q. & Wegner, J. (2008). Growth-and breed-related changes of fetal development in cattle. Asian-Australasian Journal of Animal Sciences, 21(5), 640-647. https://doi.org/10.5713/ajas.2008.70293
Marques, R.S., Cooke, R.F., Rodrigues, M.C., Cappellozza, B.I., Mills, R.R., Larson, C.K., Moriel, P. & Bohnert, D.W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science, 94(3), 1215-1226. https://doi.org/10.2527/jas.2015-0036
McCarthy, K.L., Menezes, A.C., Kassetas, C.J., Baumgaertner, F., Kirsch, J.D., Dorsam, S.T., Neville, T.L., Ward, A.K., Borowicz, P.P., Reynolds, L.P., Sedivec, K.K., Forcherio, J.C., Scott, R., Caton, J.S. & Dahlen, C.R. (2022). Vitamin and mineral supplementation and rate of gain in beef heifers II: effects on concentration of trace minerals in maternal liver and fetal liver, muscle, allantoic, and amniotic fluids at day 83 of gestation. Animals, 12(15), 1925. https://doi.org/10.3390/ani12151925 EDN: https://elibrary.ru/jwjlpc
McKeating, D.R., Fisher, J.J. & Perkins, A.V. (2019). Elemental metabolomics and pregnancy outcomes. Nutrients, 11(1), 73. https://doi.org/10.3390/nu11010073 EDN: https://elibrary.ru/chgslm
Mehdi, Y. & Dufrasne, I. (2016). Selenium in cattle: a review. Molecules, 21(4), 545. https://doi.org/10.3390/molecules21040545 EDN: https://elibrary.ru/wuigrb
Mikhalev, V., Shabunin, S., Safonov, V. & Chernitskiy, A. (2018). Metabolic status of newborn calves with intrauterine growth retardation. Reproduction in Domestic Animals, 53(S2), 168-168. https://doi.org/10.1111/rda.13272 EDN: https://elibrary.ru/uyvpyt
Miroshnikov, S.A., Zavyalov, O.A., Frolov, A.N., Bolodurina, I.P., Kalashnikov, V.V., Grabeklis, A.R., Tinkov, A.A. & Skalny, A.V. (2017). The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus). Biological Trace Element Research, 180(1), 56-62. https://doi.org/10.1007/s12011-017-0991-5 EDN: https://elibrary.ru/xnceki
Miroshnikov, S., Zavyalov, O., Frolov, A., Sleptsov, I., Sirazetdinov, F. & Poberukhin, M. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals. Environmental Science and Pollution Research, 26(18), 18554-18564. https://doi.org/10.1007/s11356-019-05163-5 EDN: https://elibrary.ru/itdenp
Mion, B., Madureira, G., Spricigo, J.F.W., King, K., Van Winters, B., LaMarre, J., LeBlanc, S.J., Steele, M.A. & Ribeiro, E.S. (2023). Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows. Journal of Dairy Science, 106(7), 5074-5095. https://doi.org/10.3168/jds.2022-22784 EDN: https://elibrary.ru/irlmkn
Neve, J. (1992). Clinical implications of trace elements in endocrinology. Biological Trace Element Research, 32(1), 173-185. https://doi.org/10.1007/BF02784602 EDN: https://elibrary.ru/rxzwum
Nezhdanov, A., Shabunin, S., Mikhalev, V., Klimov, N. & Chernitskiy, A. (2014). Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows. Turkish Journal of Veterinary and Animal Sciences, 38(6), 675-680. https://doi.org/10.3906/vet-1405-12 EDN: https://elibrary.ru/ssgdbn
Nezhdanov, A.G., Mikhalev, V.I., Chusova, G.G., Papin, N.E., Chernitskiy, A.E. & Lozovaya, E.G. (2016). Metabolic status of the cows under intrauterine growth retardation of embryo and fetus. Agricultural Biology, 51(2), 230-237. https://doi.org/10.15389/agrobiology.2016.2.230eng EDN: https://elibrary.ru/vvhkih
Ojeda, M.L., Nogales, F., Romero-Herrera, I. & Carreras, O. (2021). Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients, 13(6), 2085. https://doi.org/10.3390/nu13062085 EDN: https://elibrary.ru/htkrwl
Omur, A., Kirbas, A., Aksu, E., Kandemir, F., Dorman, E., Kaynar, O. & Ucar, O. (2016). Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period. Polish Journal of Veterinary Sciences, 19(4), 697-706. https://doi.org/10.1515/pjvs-2016-0088 EDN: https://elibrary.ru/yxuqqp
Patra, R.C., Swarup, D., Sharma, M.C. & Naresh, R. (2006). Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine, 53(10), 511-517. https://doi.org/10.1111/j.1439-0442.2006.00868.x
Plemyashov, K. & Korochkina, E. (2022). Monitoring of vitamin-mineral metabolism’ indicators in cows of different period of lactation. FASEB Journal, 36(S1), R3113. https://doi.org/10.1096/fasebj.2022.36.S1.R3113 EDN: https://elibrary.ru/vhdzqa
Reynolds, L.P., Borowicz, P.P., Caton, J.S., Crouse, M.S., Dahlen, C.R. & Ward, A.K. (2019). Developmental programming of fetal growth and development. Veterinary Clinics of North America: Food Animal Practice, 35(2), 229-247. https://doi.org/10.1016/j.cvfa.2019.02.006
Safonov, V. & Chernitskiy, A. (2022). Trace elements deficiency in dairy cows in the biogeochemical province of the Republic of Belarus and biological effects of its correction. In: New Prospects in Environmental Geosciences and Hydrogeosciences [H. Chenchouni, H. I. Chaminé, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, pp. 185-187. https://doi.org/10.1007/978-3-030-72543-3_41 EDN: https://elibrary.ru/oaaagpd
Safonov, V., Salimzade, E., Ermilova, T. & Chernitskiy, A. (2022). Retrospective diagnosis of intrauterine diselementosis in newborn calves. BIO Web of Conferences, 52, 00033. https://doi.org/10.1051/bioconf/20225200033 EDN: https://elibrary.ru/wpdjbv
Safonov, V.A. (2018). Biological role of selenium and correction effects of its content in the organism of animals. Geochemistry International, 56(10), 1046-1050. https://doi.org/10.1134/s0016702918100105 EDN: https://elibrary.ru/yswlbb
Safonov, V.A., Mikhalev, V.I. & Chernitskiy, A.E. (2018). Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation. Agricultural Biology, 53(4), 831-841. https://doi.org/10.15389/agrobiology.2018.4.831eng EDN: https://elibrary.ru/uzbltk
Shabunin, S., Nezhdanov, A., Mikhalev, V., Lozovaya, E. & Chernitskiy, A. (2017). Diselementosis as a risk factor of embryo loss in lactating cows. Turkish Journal of Veterinary and Animal Sciences, 41(4), 453-459. https://doi.org/10.3906/vet-1609-76 EDN: https://elibrary.ru/zcymlp
Suttle, N.F. (2022). Mineral Nutrition of Livestock. 5th ed. Boston: CABI, 600 p. https://doi.org/10.1079/9781789240924.0000
Van Eetvelde, M., Kamal, M.M., Hostens, M., Vandaele, L., Fiems, L.O. & Opsomer, G. (2016). Evidence for placental compensation in cattle. Animal, 10(8), 1342-1350. https://doi.org/10.1017/S1751731116000318
Van Emon, M., Sanford, C. & McCoski, S. (2020). Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 10(12), 2404. https://doi.org/10.3390/ani10122404 EDN: https://elibrary.ru/ylxmrs
Vorobyov, V., Vorobyov, D., Polkovnichenko, A. & Safonov, V. (2018). The physiological status of acclimatized Simmental cattle of the Austrian selection in the biogeochemical conditions of the Lower Volga Region. American Journal of Agriculture and Forestry, 6(6), 198-207. https://doi.org/10.11648/j.ajaf.20180606.17
Wu, G., Bazer, F.W., Wallace, J.M. & Spencer, T.E. (2006). Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science, 84(9), 2316-2337. https://doi.org/10.2527/jas.2006-156
Список литературы
Бутко, В.А., Лозовая, Е.Г. & Михалев, В.И. (2020). Клинико-эхографические маркеры диагностики нарушений раннего эмбриогенеза у коров. Ветеринарный фармакологический вестник, 2(11), 177-190. https://doi.org/10.17238/issn2541-8203.2020.2.177 EDN: https://elibrary.ru/pxusjv
Воробьев, В.И. & Воробьев, Д.В. (2014). Физиологические аспекты минерального обмена у симментальских коров, разводимых в экологических условиях низкого уровня Se, I и Co в среде и кормах Нижней Волги. Фундаментальные исследования, 8-4, 864-870. EDN: https://elibrary.ru/sjmnij
Гуркина, Л.В., Наумова, И.К. & Лебедева, М.Б. (2016). Взаимное действие биогенных микроэлементов и элементов тяжелых металлов в организме животных. Аграрный вестник Верхневолжья, 1, 32-37. EDN: https://elibrary.ru/tpzsij
Ковальский, В.В. (1974). Геохимическая экология. Москва: Наука, 300 с.
Мирошников, С.А., Завьялов, О.А., Фролов, А.Н., Харламов, А.В., Дускаев, Г.К. & Курилкина, М.Я. (2016). Элементный состав шерсти как модель для изучения межэлементных взаимодействий. Вестник мясного скотоводства, 4(96), 9-14. EDN: https://elibrary.ru/xilxpt
Сафонов, В.А., Ермилова, Т.С., Черницкий, А.Е. & Салимзаде, Э.А.О. (2024). Прогнозирование уровня микроэлементного питания плода у глубокостельных коров. Siberian Journal of Life Sciences and Agriculture, 16(3). https://doi.org/10.12731/2658-6649-2024-16-3-860 EDN: https://elibrary.ru/hxxvlk
Скальный, А.В. & Рудаков, И.А. (2004). Биоэлементы в медицине. Москва: Мир, 272 с. ISBN: 5-03-003645-8 EDN: https://elibrary.ru/wqrzft
Abdelrahman, M.M. & Kincaid, R.L. (1993). Deposition of copper, manganese, zinc, and selenium in bovine fetal tissue at different stages of gestation. Journal of Dairy Science, 76(11), 3588-3593. https://doi.org/10.3168/jds.s0022-0302(93)77698-5
Anas, M., Diniz, W.J.S., Menezes, A.C.B., Reynolds, L.P., Caton, J.S., Dahlen, C.R. & Ward, A.K. (2023). Maternal mineral nutrition regulates fetal genomic programming in cattle: a review. Metabolites, 13(5), 593. https://doi.org/10.3390/metabo13050593 EDN: https://elibrary.ru/cnnbmg
Azzam, S.M., Kinder, J.E., Nielsen, M.K., Werth, L.A., Gregory, K.E., Cundiff, L.V. & Koch, R.M. (1993). Environmental effects on neonatal mortality of beef calves. Journal of Animal Science, 71(2), 282-290. https://doi.org/10.2527/1993.712282x
Menezes, A.C.B., McCarthy, K.L., Kassetas, C.J., Baumgaertner, F., Kirsch, J.D., Dorsam, S.T., Neville, T.L., Ward, A.K., Borowicz, P.P., Reynolds, L.P., Sedivec, K.K., Forcherio, J.C., Scott, R. & Caton, J.S. (2022). Vitamin and mineral supplementation and rate of gain in beef heifers I: Effects on dam hormonal and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids at d 83 of gestation. Animals, 12(14), 1757. https://doi.org/10.3390/ani12141757 EDN: https://elibrary.ru/owyxrp
Buczinski, S.M., Fecteau, G., Lefebvre, R.C. & Smith, L.C. (2007). Fetal well-being assessment in bovine near-term gestations: Current knowledge and future perspectives arising from comparative medicine. The Canadian Veterinary Journal, 48(2), 178-183.
Chen, Y.H., Zhao, M., Chen, X., Zhang, Y., Wang, H., Huang, Y.Y., Wang, Z., Zhang, Z.H., Zhang, C. & Xu, D.X. (2012). Zinc supplementation during pregnancy protects against lipopolysaccharide-induced fetal growth restriction and demise through its anti-inflammatory effect. The Journal of Immunology, 183(1), 454-463. https://doi.org/10.4049/jimmunol.1103579
Chernitskiy, A. & Safonov, V. (2019). The effects of the vitamin-mineral drug “Antimiopatik” use in cows during the dry period on postnatal growth and health of the offspring. Reproduction in Domestic Animals, 54(S3), 131-132. https://doi.org/10.1111/rda.13528 EDN: https://elibrary.ru/scexqz
Cygan-Szczegielniak, D., Stanek, M., Giernatowska, E. & Janicki, B. (2014). Impact of breeding region and season on the content of some trace elements and heavy metals in the hair of cows. Folia Biologica, 62(3), 163-169. https://doi.org/10.3409/FB62_3.163
Dahlen, C.R., Reynolds, L.P. & Caton, J.S. (2022). Selenium supplementation and pregnancy outcomes. Frontiers in Nutrition, 9, 1011850. https://doi.org/10.3389/fnut.2022.1011850 EDN: https://elibrary.ru/jacotg
Eby, G.N. (2016). Principles of Environmental Geochemistry. Long Grove: Waveland Press, 514 p.
Fitzgerald, A.M., Ryan, D.P. & Berry, D.P. (2015). Factors associated with the differential in actual gestational age and gestational age predicted from transrectal ultrasonography in pregnant dairy cows. Theriogenology, 84(3), 358-364. https://doi.org/10.1016/j.theriogenology.2015.03.023
Georgievskii, V.I., Annenkov, B.N. & Samokhin, V.T. (1982). Mineral Nutrition of Animals. London: Butterworths, 475 p. ISBN: 0-408-10770-7 EDN: https://elibrary.ru/rtxvft
Goff, J.P. (2018). Invited review: Mineral absorption mechanisms, mineral interactions that affect acid-base and antioxidant status, and diet considerations to improve mineral status. Journal of Dairy Science, 101(4), 2763-2813. https://doi.org/10.3168/jds.2017-13112 EDN: https://elibrary.ru/vemohd
Greenwood, P.L. & Bell, A.W. (2019). Developmental programming and growth of livestock tissues for meat production. Veterinary Clinics of North America: Food Animal Practice, 35(2), 303-319. https://doi.org/10.1016/j.cvfa.2019.02.008
Greenwood, P.L. & Café, L.M. (2007). Prenatal and pre-weaning growth and nutrition of cattle: long-term consequences for beef production. Animal, 1(9), 1283-1296. https://doi.org/10.1017/S175173110700050X
Grzeszczak, K., Kwiatkowski, S. & Kosik-Bogacka, D. (2020). The role of Fe, Zn, and Cu in pregnancy. Biomolecules, 10(8), 1176. https://doi.org/10.3390/biom10081176 EDN: https://elibrary.ru/igeamy
Harvey, K.M., Cooke, R.F., Colombo, E.A., Rett, B., de Sousa, O.A., Harvey, L.M., Russell, J.R., Pohler, K.G. & Brandão, A.P. (2021). Supplementing organic-complexed or inorganic Co, Cu, Mn, and Zn to beef cows during gestation: physiological and productive response of cows and their offspring until weaning. Journal of Animal Science, 99(5), skab095. https://doi.org/10.1093/jas/skab095 EDN: https://elibrary.ru/atclci
Hicks, Z.M. & Yates, D.T. (2021). Going up inflame: Reviewing the underexplored role of inflammatory programming in stress-induced intrauterine growth restricted livestock. Frontiers in Animal Science, 2, 761421. https://doi.org/10.3389/fanim.2021.761421 EDN: https://elibrary.ru/tgiodw
Hracsko, Z., Orvos, H., Novak, Z., Pal, A. & Varga, I.S. (2008). Evaluation of oxidative stress markers in neonates with intra-uterine growth retardation. Redox Report, 13(1), 11-16. https://doi.org/10.1179/135100008X259097
Issah, I., Duah, M.S., Arko-Mensah, J., Bawua, S.A., Agyekum, T.P. & Fobil, J.N. (2024). Exposure to metal mixtures and adverse pregnancy and birth outcomes: A systematic review. Science of the Total Environment, 908, 168380. https://doi.org/10.1016/j.scitotenv.2023.168380
Joksimović-Todorović, M., Davidović, V. & Bojanić-Rašović, M. (2016). The effects of some microelements supplementation: Selenium, zinc and copper into dairy cows feeds on their health and reproductive performances. Biotechnology in Animal Husbandry, 32(2), 101-110. https://doi.org/10.2298/BAH1602101J
Kalaeva, E., Kalaev, V., Chernitskiy, A., Alhamed, M. & Safonov, V. (2020). Incidence risk of bronchopneumonia in newborn calves associated with intrauterine diselementosis. Veterinary World, 13(5), 987-995. https://doi.org/10.14202/vetworld.2020.987-995 EDN: https://elibrary.ru/vnsrtq
Lewicka, I., Kocyłowski, R., Grzesiak, M., Gaj, Z., Oszukowski, P. & Suliburska, J. (2017). Selected trace elements concentrations in pregnancy and their possible role - Literature review. Ginekologia Polska, 88(9), 509-514. https://doi.org/10.5603/gp.a2017.0093
Lonergan, P., Forde, N. & Spencer, T. (2016). Role of progesterone in embryo development in cattle. Reproduction, Fertility and Development, 28(1-2), 66-74. https://doi.org/10.1071/rd15326
Mao, W.H., Albrecht, E., Teuscher, F., Yang, Q., Zhao, R.Q. & Wegner, J. (2008). Growth-and breed-related changes of fetal development in cattle. Asian-Australasian Journal of Animal Sciences, 21(5), 640-647. https://doi.org/10.5713/ajas.2008.70293
Marques, R.S., Cooke, R.F., Rodrigues, M.C., Cappellozza, B.I., Mills, R.R., Larson, C.K., Moriel, P. & Bohnert, D.W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science, 94(3), 1215-1226. https://doi.org/10.2527/jas.2015-0036
McCarthy, K.L., Menezes, A.C., Kassetas, C.J., Baumgaertner, F., Kirsch, J.D., Dorsam, S.T., Neville, T.L., Ward, A.K., Borowicz, P.P., Reynolds, L.P., Sedivec, K.K., Forcherio, J.C., Scott, R., Caton, J.S. & Dahlen, C.R. (2022). Vitamin and mineral supplementation and rate of gain in beef heifers II: effects on concentration of trace minerals in maternal liver and fetal liver, muscle, allantoic, and amniotic fluids at day 83 of gestation. Animals, 12(15), 1925. https://doi.org/10.3390/ani12151925 EDN: https://elibrary.ru/jwjlpc
McKeating, D.R., Fisher, J.J. & Perkins, A.V. (2019). Elemental metabolomics and pregnancy outcomes. Nutrients, 11(1), 73. https://doi.org/10.3390/nu11010073 EDN: https://elibrary.ru/chgslm
Mehdi, Y. & Dufrasne, I. (2016). Selenium in cattle: a review. Molecules, 21(4), 545. https://doi.org/10.3390/molecules21040545 EDN: https://elibrary.ru/wuigrb
Mikhalev, V., Shabunin, S., Safonov, V. & Chernitskiy, A. (2018). Metabolic status of newborn calves with intrauterine growth retardation. Reproduction in Domestic Animals, 53(S2), 168-168. https://doi.org/10.1111/rda.13272 EDN: https://elibrary.ru/uyvpyt
Miroshnikov, S.A., Zavyalov, O.A., Frolov, A.N., Bolodurina, I.P., Kalashnikov, V.V., Grabeklis, A.R., Tinkov, A.A. & Skalny, A.V. (2017). The reference intervals of hair trace element content in Hereford cows and heifers (Bos taurus). Biological Trace Element Research, 180(1), 56-62. https://doi.org/10.1007/s12011-017-0991-5 EDN: https://elibrary.ru/xnceki
Miroshnikov, S., Zavyalov, O., Frolov, A., Sleptsov, I., Sirazetdinov, F. & Poberukhin, M. The content of toxic elements in hair of dairy cows as an indicator of productivity and elemental status of animals. Environmental Science and Pollution Research, 26(18), 18554-18564. https://doi.org/10.1007/s11356-019-05163-5 EDN: https://elibrary.ru/itdenp
Mion, B., Madureira, G., Spricigo, J.F.W., King, K., Van Winters, B., LaMarre, J., LeBlanc, S.J., Steele, M.A. & Ribeiro, E.S. (2023). Effects of source of supplementary trace minerals in pre- and postpartum diets on reproductive biology and performance in dairy cows. Journal of Dairy Science, 106(7), 5074-5095. https://doi.org/10.3168/jds.2022-22784 EDN: https://elibrary.ru/irlmkn
Neve, J. (1992). Clinical implications of trace elements in endocrinology. Biological Trace Element Research, 32(1), 173-185. https://doi.org/10.1007/BF02784602 EDN: https://elibrary.ru/rxzwum
Nezhdanov, A., Shabunin, S., Mikhalev, V., Klimov, N. & Chernitskiy, A. (2014). Endocrine and metabolic mechanisms of embryo and fetal intrauterine growth retardation in dairy cows. Turkish Journal of Veterinary and Animal Sciences, 38(6), 675-680. https://doi.org/10.3906/vet-1405-12 EDN: https://elibrary.ru/ssgdbn
Nezhdanov, A.G., Mikhalev, V.I., Chusova, G.G., Papin, N.E., Chernitskiy, A.E. & Lozovaya, E.G. (2016). Metabolic status of the cows under intrauterine growth retardation of embryo and fetus. Agricultural Biology, 51(2), 230-237. https://doi.org/10.15389/agrobiology.2016.2.230eng EDN: https://elibrary.ru/vvhkih
Ojeda, M.L., Nogales, F., Romero-Herrera, I. & Carreras, O. (2021). Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients, 13(6), 2085. https://doi.org/10.3390/nu13062085 EDN: https://elibrary.ru/htkrwl
Omur, A., Kirbas, A., Aksu, E., Kandemir, F., Dorman, E., Kaynar, O. & Ucar, O. (2016). Effects of antioxidant vitamins (A, D, E) and trace elements (Cu, Mn, Se, Zn) on some metabolic and reproductive profiles in dairy cows during transition period. Polish Journal of Veterinary Sciences, 19(4), 697-706. https://doi.org/10.1515/pjvs-2016-0088 EDN: https://elibrary.ru/yxuqqp
Patra, R.C., Swarup, D., Sharma, M.C. & Naresh, R. (2006). Trace mineral profile in blood and hair from cattle environmentally exposed to lead and cadmium around different industrial units. Journal of Veterinary Medicine. A, Physiology, Pathology, Clinical Medicine, 53(10), 511-517. https://doi.org/10.1111/j.1439-0442.2006.00868.x
Plemyashov, K. & Korochkina, E. (2022). Monitoring of vitamin-mineral metabolism’ indicators in cows of different period of lactation. FASEB Journal, 36(S1), R3113. https://doi.org/10.1096/fasebj.2022.36.S1.R3113 EDN: https://elibrary.ru/vhdzqa
Reynolds, L.P., Borowicz, P.P., Caton, J.S., Crouse, M.S., Dahlen, C.R. & Ward, A.K. (2019). Developmental programming of fetal growth and development. Veterinary Clinics of North America: Food Animal Practice, 35(2), 229-247. https://doi.org/10.1016/j.cvfa.2019.02.006
Safonov, V. & Chernitskiy, A. (2022). Trace elements deficiency in dairy cows in the biogeochemical province of the Republic of Belarus and biological effects of its correction. In: New Prospects in Environmental Geosciences and Hydrogeosciences [H. Chenchouni, H. I. Chaminé, M. F. Khan, et al. (Eds.)]. CAJG 2019. Advances in Science, Technology & Innovation. Cham: Springer, pp. 185-187. https://doi.org/10.1007/978-3-030-72543-3_41 EDN: https://elibrary.ru/oaaagpd
Safonov, V., Salimzade, E., Ermilova, T. & Chernitskiy, A. (2022). Retrospective diagnosis of intrauterine diselementosis in newborn calves. BIO Web of Conferences, 52, 00033. https://doi.org/10.1051/bioconf/20225200033 EDN: https://elibrary.ru/wpdjbv
Safonov, V.A. (2018). Biological role of selenium and correction effects of its content in the organism of animals. Geochemistry International, 56(10), 1046-1050. https://doi.org/10.1134/s0016702918100105 EDN: https://elibrary.ru/yswlbb
Safonov, V.A., Mikhalev, V.I. & Chernitskiy, A.E. (2018). Antioxidant status and functional condition of respiratory system of newborn calves with intrauterine growth retardation. Agricultural Biology, 53(4), 831-841. https://doi.org/10.15389/agrobiology.2018.4.831eng EDN: https://elibrary.ru/uzbltk
Shabunin, S., Nezhdanov, A., Mikhalev, V., Lozovaya, E. & Chernitskiy, A. (2017). Diselementosis as a risk factor of embryo loss in lactating cows. Turkish Journal of Veterinary and Animal Sciences, 41(4), 453-459. https://doi.org/10.3906/vet-1609-76 EDN: https://elibrary.ru/zcymlp
Suttle, N.F. (2022). Mineral Nutrition of Livestock. 5th ed. Boston: CABI, 600 p. https://doi.org/10.1079/9781789240924.0000
Van Eetvelde, M., Kamal, M.M., Hostens, M., Vandaele, L., Fiems, L.O. & Opsomer, G. (2016). Evidence for placental compensation in cattle. Animal, 10(8), 1342-1350. https://doi.org/10.1017/S1751731116000318
Van Emon, M., Sanford, C. & McCoski, S. (2020). Impacts of bovine trace mineral supplementation on maternal and offspring production and health. Animals, 10(12), 2404. https://doi.org/10.3390/ani10122404 EDN: https://elibrary.ru/ylxmrs
Vorobyov, V., Vorobyov, D., Polkovnichenko, A. & Safonov, V. (2018). The physiological status of acclimatized Simmental cattle of the Austrian selection in the biogeochemical conditions of the Lower Volga Region. American Journal of Agriculture and Forestry, 6(6), 198-207. https://doi.org/10.11648/j.ajaf.20180606.17
Wu, G., Bazer, F.W., Wallace, J.M. & Spencer, T.E. (2006). Board-invited review: intrauterine growth retardation: implications for the animal sciences. Journal of Animal Science, 84(9), 2316-2337. https://doi.org/10.2527/jas.2006-156
Copyright (c) 2025 Vladimir A. Safonov, Tatiana S. Ermilova, Anton E. Chernitskiy

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.